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A quasi-canonical sequence of finite dimensional quantizations has been
found which has canonical quantization as its limit. In order to demonstrate
its practical utility and its numerical convergence, this formalism is apphed
to the eigenvalue and "eigenfunction” problem of several harmonic and an-
harmonic oscillators.
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I. Introduction

Harmonic and anharmonic oscillators have long been used to illustrate
new approximation techniques. Here they are used to demonstrate the appli-
cation of an approximation procedure based upon the approach of a sequence
of discrete non-canonical qua.ntmahons to the standard canonical quantiza-

tion Limit .
Consider a dmcrete one dimensional space in which the coordinates’ of

allowed positions are interger multiples of a fundamental scale parameter a
having dimensions of length Although it is well known that the canonical

commutation relation ,
mm (1)

does not admit finite dimensional matrix repreeentations,l one can ask whether
a imit procedure exists such that sequences of matrices {Qy, Py} satisfy in
some way

[QN’ PN] ffi[ , (2)

in the weak sense. We have found the answer to be in the affirmative? and

- therefore briefly sketch the theoretical analysis and apply the formalism to the
numerical eigenvalue and exgenstate ‘problems of harmonic and anharmonic

oscﬂlators

II. Brief Analysis

The quantum mechanical scalar product of two wave functions in the
Schroedinger representation can be written in the form

®.9)= [ [ ¥a)ola - 7)2()dadd, 3)

a form eqmva.lent to the traditional one. With respect to this scalar product
the Schroedinger coordinate and momentum representatives have the form

Qa,q) = ¢8(g - ¢), (4)

Plg,d) = —fh;,%&(q —¢). 5)
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On the other hand in a finite discrete space representation of the canonical
coordinates and momenta one defines the Schroedinger representative of the
coordinate operator by the diagonal matrix

((N-1)f20 . . . .. 0 \
0 : : :

w=a| D, - L®

L .0
\ © Coe . .0 —(N=-1)/2)

or equivalently in component notation by

Ns = rad;. (7)

Here a defines the distance between neighboring points in space and N is a
power of 2.

The components of the momentum operator are taken from the discrete
Fourier transform of the diagonal part of Qy,

R W2 oxk 2xik
Ra=t 3 Trep{ Tl ®)
N e (wiyy Na N

Thus Py is a Toeplitz matrix. The expressions (4) and (5) follow from a
proper definition of the state space scalar product and limiting procedure.

The state space scalar product is defined by

| W=
3,¥)=- 3  ox¥ (9)
¢ f=(N-1)/2

where the bar denotes complex conjugation. With respect to this scalar
product it is convenient for the sake of the weak limiting procedure to write
the rth eigenvector of @y as either

R~

'=§', (10)
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or equivenently expressed in terms of the ﬁniié’discrete Fourier transform as

D2 9 e
q'= % Y, exp { mk(r - s)} (11)
r k=—(N-1)/3
Using the latter one can verify that

(N-1)/2

)| 21nk

(9)=1 s= { (r ,)} (12)
ars Na n--(g' -1)/2

One can now define the refinement or weak limit as that in which
Na — 00,a — 0, ra—bq,sa—rq', (13)

so that the matrix product summations carry over into integrals (in the same

way that a Fourier series can be carried over into a Fourier integral). Note
that this approach differs from those of others in which the domain of the
right hand side of (2) is restricted to a subspace of the Hllbert space.’

For a small enough and N,r,s large enough one can get as close as desired

to any real valued q or q’. In this case using the right hand eide of (12) one
can see that in the reﬁnement or weak hmlt

@)—oe- (14)
Similarly one can see that (2)and (7) and (8) have the weak himits
(4,19, P 9) — ihe5- 5(4 7) (15)
(.9 9) —8(g - q’), (16)
(6P )~ i 2sle = ). an)

Note that with all of these weak limits the factor 1 associated with the
implied metric tensor in the scalar product (9) is essential.

The existence of these 1 hmlts is considered sufficient justification for inves-
tigating the practical utility of this finite dimensional quasi-canonical quan-

tization. Hence we investigate the elgenva.lue problem of several of the osal-
lators described by the Hamiltonian '

2
H= E—+FQ+mw’Q +Am

L3

T (18)
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III. Oscillator Eigenstates and Eigenvalues
Given (8) and (7) the Hamiltonian (18) can be written in the form

1 W2 (2xhk)?

Hi, = N (Zm(N a)?

+ Fra + e’ (ra)’ + —ni(ra)‘) exp {-——21rk
k=—(N-1){3 2 4

(19)
It now remains to make proper choices of N and a and to carry out the
numerical calculations in a manner compatible with a refinement process.

Define exponents n and [ such that

N=2"a=a2"*L=0a2""n-a>0, (20)

where aj is a length scale appropriate to the problem and where L gives the
physical size of our one dimensional space. Clearly n sets the dimensionality
of the matrix and « the refinement. The size of the space is L,while the rth
eigenvector g corresponds to the physical coordinate rag2"—*.

A. The Harmonic Oscillator
For the case of the harmonic oscillator (F = A = 0) it is convenient to

choose
ag = (—’L) 112. (21)

muw

With the choices (19),(20), and (21) the discretized dimensionless form for
the Hamiltonian is

" Sl (2xk) 2 2% r—s
—— = + r x]) —2 . 22
hw k:—(§2—1)12 (22"‘3““ 2 ) ¢ { w* ( N )}  (22)

One has different approximations for different choices of n and «. Fig-
ure I. illustrates the first 4 normalized ”wave” eigenvectors for the discrete
Harmonic Oscillator (F' = A= 0) with n = 8, @ = 1. Amasingly, for the first
two eigenvectors of {% the absolute value of the error between a component
of the eigenvector and the exact corresponding eigenfunction solution to the
Schroedinger equation is less that 10~ for the ground state and 10~ for the
first excited state at any of the allowed positions in the discrete space.
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PROBABILITY AMPLITUDE
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FIGURE I. HARMONIC 0SC WAVEVECTORS (8,0)
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Table I illustrates the numerical convergence of the 1st four harmonic
oscillator eigenvalues as a function of matrix dimensionality N and «.

Table I H.O.
N=2,0a=0 N=4,a=0 N=8,a0=0 N=16,a=1
Ey 1.3587 .5410 50018 .5000001
E 1.3587 1.2186 1.4961 1.499984
E, - 3.1156 2.5241 2.500205
Es - 3.7933 3.3582 3.497943

B. The Asymmetric Oscillator
For the case of the asymmetric oscillator we take the choice

| 21{’ g 8F F
ao—(m) )wz"—mao)’\—mag' (23)

The components of the dimensionless Hamiltonian now have the form

H, W=/ ( (2xk)? 2""‘"‘r*) (r—2s)
—=t = +20 " — 8. 233 4 exp { — 27k
Fag (o (Flyp \ P74 4 N

Figure II illustrates the asymmetric potential while Figure III illustrates
the solutions to the eigenvector problem for this asymmetric oscillator. Of
interest is the "trapping” in the virtual potential well occuring with the 4th
energy level, an effect not easily accounted for with other approximation
techniques.

Table II illustrates the numerical convergence of the first four eigenvalues
using several choices of N and o.

TableIIT'  ASYM OSC.
N=2,0=0 N=4,0=0 N=8,a0=0 N=16,a0=1 N=64,a=2

E —.7507 -9.3999 —19.1162 —19.6787 —19.6803
E —1.2493 -3.2519 —16.5510 —15.6227 —-15.6025
E; - —-0.6331 —9.1040 —11.7496 —11.7147
Es - 2.0159 —8.9120 —8.6628 —8.65986
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PRCB. AMPLITUDE
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FIGURE III. ASYM OSC WAVEVECTORS (8,0)
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C. The Quartic Oscillator
In the case of the quartic oscillator (F=w = 0) the choice

_(%)} - (24)

suffices. In this case the components of the dimensionless Hamiltonian have
the form

"y, -1z (2nk)?  gte—npt (r—23)
A e —(&1)/2 e b S Ry T

The quartic oeallator is mcluded here because it has been a frequent subject
of study and its elgenvalues are numerically established. Table II1 lustrates
the numerical convergence for the first four exgenvaluee and gives the ”exact”
eigenvalues as numerically established by others*5¢ using distinct techniques.

Table Il  QUARTIC 0sC
N=2,0a=0 N=4,0=0 N=8a=0 N=16,a=1 ezact”

E, 12493 4498 ' .4"2"1’7 .420805 420804
Ey 12493 1.2760 1.5587 1.50790 1.50790
E - 3.0895 2.9422 2.95880 2.95880
Es - 3.9157 3.8709 462128  4.62122

IV Summary

The purpose here has been to demonstrate the numerical application
of the quasi-canonical quantization procedure to 1 dimensional oscillatory
systems. With this application it is clear that numerical convergence occurs
for each of the potentials.

The calculation procedure is computationally stra.ightforward since the
momentum matrix (8) can be conveniently calculated using well established
signal processing techniques.” In particular, fast Fourier transform (FFT)?
techniques allow for rapid determination of ”state” vectors and quantum
numbers.

394

DN T WO ) b




The approximation procedure utilized here is based not upon the trun-
cation of the wave functions but rather on how well the canonical commuta-
tion relation is approximated. In contrast to usual perturbation theories the
number of allowed states in each order is thesame as the number of allowed
positions. The convergence of this discreie quantization to a canonical one
and detailed derivations of results quoted in the Section II will be discussed
elsewhere. However it is useful to note two important facts about the pro-
cedure. First, the use of the discrete fourier transform (and numerical use
of FFT’s®) does not implies the periodicity of space, rather the quantization
is carried out over a finite region of space. Secondly, the matrix Qy as a
N=2"dimensional matrix insures not only the faster speed of the FFI’s uti-
lized but also that on the discrete scale that Qy is an invertible matrix for
which the eigenvalue gero exists only as a refinement or weak limit. Thus
one should not expect numerical problems in dealing with coulomb like po-
tentials. :

Finally, with the refinement limit we note that one can get as close as
one wishes to canonical quantisation with discrete space, suggesting that
quantum theory cannot readily distinguish between discrete and continuous
space time. In addition, please note that the combination (9) and (11) al-
lows a sequence of matrices to serve as the definition of required generalized
functions, as in (14,15,16,17), somewhat in analogy to the good functions of
Lighthill?. 10
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